Memory Management and Limits

sys includes several functions for understanding and controlling memory usage.

Reference Counts

Python uses reference counting and garbage collection for automatic memory management. An object is automatically marked to be collected when its reference count drops to zero. To examine the reference count of an existing object, use getrefcount().

import sys

one = []
print 'At start         :', sys.getrefcount(one)

two = one

print 'Second reference :', sys.getrefcount(one)

del two

print 'After del        :', sys.getrefcount(one)

The count is actually one higher than expected because there is a temporary reference to the object held by getrefcount() itself.

$ python

At start         : 2
Second reference : 3
After del        : 2

See also

Control the garbage collector via the functions exposed in gc.

Object Size

Knowing how many references an object has may help find cycles or a memory leak, but it isn’t enough to determine what objects are consuming the most memory. That requires knowledge about how big objects are.

import sys

class OldStyle:

class NewStyle(object):

for obj in [ [], (), {}, 'c', 'string', 1, 2.3, 
             OldStyle, OldStyle(), NewStyle, NewStyle(),
    print '%10s : %s' % (type(obj).__name__, sys.getsizeof(obj))

getsizeof() reports the size in bytes.

$ python

      list : 72
     tuple : 56
      dict : 280
       str : 38
       str : 43
       int : 24
     float : 24
  classobj : 104
  instance : 72
      type : 904
  NewStyle : 64

The reported size for a custom class does not include the size of the attribute values.

import sys

class WithoutAttributes(object):

class WithAttributes(object):
    def __init__(self):
        self.a = 'a'
        self.b = 'b'

without_attrs = WithoutAttributes()
print 'WithoutAttributes:', sys.getsizeof(without_attrs)

with_attrs = WithAttributes()
print 'WithAttributes:', sys.getsizeof(with_attrs)

This can give a false impression of the amount of memory being consumed.

$ python

WithoutAttributes: 64
WithAttributes: 64

For a more complete estimate of the space used by a class, provide a __sizeof__() method to compute the value by aggregating the sizes of attributes of an object.

import sys

class WithAttributes(object):
    def __init__(self):
        self.a = 'a'
        self.b = 'b'
    def __sizeof__(self):
        return object.__sizeof__(self) + \
            sum(sys.getsizeof(v) for v in self.__dict__.values())

my_inst = WithAttributes()
print sys.getsizeof(my_inst)

This version adds the base size of the object to the sizes of all of the attributes stored in the internal __dict__.

$ python



Allowing infinite recursion in a Python application may introduce a stack overflow in the interpreter itself, leading to a crash. To eliminate this situation, the interpreter provides a way to control the maximum recursion depth using setrecursionlimit() and getrecursionlimit().

import sys

print 'Initial limit:', sys.getrecursionlimit()


print 'Modified limit:', sys.getrecursionlimit()

def generate_recursion_error(i):
    print 'generate_recursion_error(%s)' % i

except RuntimeError, err:
    print 'Caught exception:', err

Once the recursion limit is reached, the interpreter raises a RuntimeError exception so the program has an opportunity to handle the situation.

$ python

Initial limit: 1000
Modified limit: 10
Caught exception: maximum recursion depth exceeded while getting the str of an object

Maximum Values

Along with the runtime configurable values, sys includes variables defining the maximum values for types that vary from system to system.

import sys

print 'maxint    :', sys.maxint
print 'maxsize   :', sys.maxsize
print 'maxunicode:', sys.maxunicode

maxint is the largest representable regular integer. maxsize is the maximum size of a list, dictionary, string, or other data structure dictated by the C interpreter’s size type. maxunicode is the largest integer Unicode point supported by the interpreter as currently configured.

$ python

maxint    : 9223372036854775807
maxsize   : 9223372036854775807
maxunicode: 65535

Floating Point Values

The structure float_info contains information about the floating point type representation used by the interpreter, based on the underlying system’s float implementation.

import sys

print 'Smallest difference (epsilon):', sys.float_info.epsilon
print 'Digits (dig)              :', sys.float_info.dig
print 'Mantissa digits (mant_dig):', sys.float_info.mant_dig
print 'Maximum (max):', sys.float_info.max
print 'Minimum (min):', sys.float_info.min
print 'Radix of exponents (radix):', sys.float_info.radix
print 'Maximum exponent for radix (max_exp):', sys.float_info.max_exp
print 'Minimum exponent for radix (min_exp):', sys.float_info.min_exp
print 'Maximum exponent for power of 10 (max_10_exp):', sys.float_info.max_10_exp
print 'Minimum exponent for power of 10 (min_10_exp):', sys.float_info.min_10_exp
print 'Rounding for addition (rounds):', sys.float_info.rounds


These values depend on the compiler and underlying system. These examples were produced on OS X 10.6.4.

$ python

Smallest difference (epsilon): 2.22044604925e-16

Digits (dig)              : 15
Mantissa digits (mant_dig): 53

Maximum (max): 1.79769313486e+308
Minimum (min): 2.22507385851e-308

Radix of exponents (radix): 2

Maximum exponent for radix (max_exp): 1024
Minimum exponent for radix (min_exp): -1021

Maximum exponent for power of 10 (max_10_exp): 308
Minimum exponent for power of 10 (min_10_exp): -307

Rounding for addition (rounds): 1

See also

The float.h C header file for the local compiler contains more details about these settings.

Byte Ordering

byteorder is set to the native byte order.

import sys

print sys.byteorder

The value is either big for big-endian or little for little-endian.

$ python


See also

Wikipedia: Endianness
Description of big and little endian memory systems.
array, struct
Other modules that depend on the byte order.